
 1

Robot Communication
6/25/07 to 8/09/07

By Benjamin Shih

Montgomery Blair High School

bs1212@gmail.com

Executive Summary

The goal for my summer project was for two robots to work together and

communicate with each other to map a room, and find a “finish” point. I was also

interested in improving the communication algorithm. However, due to partially available

equipment and limited time in the summer, I was only able to accomplish part of this

interesting summer project.

I have been trying to work with two MobileRobot AmigoBots in the University of

Maryland (UMD) Hybrid Network Laboratory. I encountered many problems, including

the wireless connection, incompatible camera, and the C++ compiler.

After fiddling around with the parts and trying to fix the problems, I concluded

that I would not be able to operate both robots simultaneously. My focus was shifted to

making one robot operate autonomously. I was able to collect all the functioning pieces

from both robots and put them on a single robot to make one robot function. I also

developed programs which allow the robot to perform some basic movements, including

turning and wandering. In the end, I identified a list of parts that are needed for future

research and documented a manual for operating the robot.

I. Introduction
Today we can find all kinds of robots applications in our daily life. These

applications range from basic, such as civil simplifications, to advanced, such as

biomedical engineering and space exploration. Conventionally, a single robot has been

used to accomplish certain specific tasks; however, multiple robots have the potential to

accomplish a task more efficiently and effectively. This is very important, especially

when time is a critical component. Some robots require assistance from others, such as a

land roving robot getting vision of the other side of a mountain. In addition, if two robots

needed to scout an area, they could do so without overlapping paths. The major challenge

is to develop artificial intelligence, so multiple robots can be grouped together and can

communicate with each other and work together to accomplish assigned tasks on time.

In section II, I am going to discuss the approach I used to operate and program the

robot. The task was difficult because I had originally planned to have two robots

communicate. In section III, I am going to discuss the results I obtained. I was able to

connect the robot to the Internet and program it. In section IV, I provide detail discussion

on the problems I encountered; parts were missing, and software was faulty. Section V is

about the implication of this summer project and the importance of robot communication

in the future. Section VI discusses what I would like to do to further the study of robot

communication.

 2

II. Approach
The two robots, in the UMD Hybrid Network Lab, consist of a polycarbonate

body and aluminum chassis. They are equipped with computers, both of which run

Debian Linux. The computers include basic ports, such as monitor, keyboard, and mouse.

A wireless modem is attached inside. They also include iSweet cameras plugged into

USB ports. The computers share a battery with the robots that they are connected to.

Each robot has eight sonar that allow it to detect obstacles.

I connected the computer on the robot to a monitor. The computer already had

programming software installed, so I studied the code and wrote my own programs.

Setting up the network allowed me to remotely control the robot. I concluded that I would

not be able to operate both robots simultaneously, so I decided to make one robot operate

autonomously. I was able to collect all the functioning pieces from both robots and put

them on a single robot to make one robot function.

III. Results
I could not fulfill my original goal because one of the robots could not be used,

and sufficient documents for robot operation did not exist. Instead, I focused on operating

one robot and wrote a manual for operating this type of robot. This manual documented

steps to connect the parts of the robot and functionalities that the robot had.

Documentation of problems faced by previous users would help others to avoid mistakes

and save time. Not knowing what materials were actually needed to program the robot

made getting started difficult. The following list includes the major results.

 Simulation

 Recharging

 Running Pre-Set Programs

 Basic Programming

 Networking

Simulation

 MobileSim allows the user to simulate a user-selected program by performing the

operation on a digital map. For example, assume the digital map has a wall and the

program run tells the robot to only move forward. The wall is also in the path of the

robot. The robot will move forward until it hits the virtual wall, and it will continue to run

into the wall until the program is terminated. The programs simulated what they are

designed to do, using digital maps that have been created.

Recharging

 After I first drained the batteries of the robots, the indicator started flashing red. I

was not sure if that meant something was wrong with the connection or if the battery was

low. I left the charger in overnight because the battery port was specifically designed for

the robot. The next day, the indicator turned green again. Therefore, a red indicator

means low battery, a flashing red indicator means extremely low battery, and a green

flashing indicator means sufficient battery.

 3

Running Pre-Set Programs

 The Aria program had already been downloaded onto the robots. It included a

demo program, which allowed the user to test its sonar, configurations, battery, camera,

system. It also included other tests such as battery and sonar tests. The programs were

written in C++, and they came with a compiler/debugger. Once a program was compiled,

it could be run simply by typing its name in the command line.

Basic Programming

 I had moderate success with programming. Moving forwards and backwards was

simple because they only required a few of parameters. I had also played with the

programs that allow the robot to travel a given distance, travel in a triangle, and travel in

a rectangle.

The most important part to programming the robots was to remember all the other

code that was mandatory – a lot of the codes in the beginning and end remained the same

in all programs. Some of the programs include:

 Wander – Makes the robot move around, avoiding obstacles detected by its sonar.

 Turn – Makes the robot turn.

 Teleop – Allows the user to control the robot.

 Sonar – Turns on all eight sonar and returns the frequency they detect.

 Server – The computer can “talk” with the robot. A certain input will cause the

robot to perform an action.

 Move forward/backward – Move the robot forwards and backwards. Some sample

code is provided below.

…

ArActionConstantVelocity constantVelocity("CV", 400);

…

 robot.lock();

 robot.comInt(ArCommands::ENABLE, 1);

 robot.addAction(&constantVelocity, 25);

 robot.unlock();

 robot.waitForRunExit();

 Aria::exit(0);

}

Networking

 With the help of George, I was able to connect the computer on the robot to the

internet through an Ethernet cable. The main problem was that I had been using a faulty

cable to connect to the modem. Once the cable was changed, the connection just had to

be enabled.

 4

 Through additional help, I was also able to connect the computer on the robot to

the internet through the UMD wireless network. I had to change the interfaces file so that

the robot would recognize the wireless signal.

 However, this wireless network posed another problem. The objective of the

network was to work on the robot from another computer. The wired network in the lab

was not secure, but the UMD network was. Because of this, the computers in the lab

could not connect to the robot. In the end, I just had to connect to the UMD network with

the computer I was SSHing with to be able to SSH to the robot.

IV. Discussion
Working on the AmigoBot project has been challenging and time-consuming

because of the following problems I have encountered:

 Equipment Location

 Camera

 Battery

 Defects

 Java

 Contacts

 Software

Equipment Location

The first predicament was the location of all the equipment. Aside from the

robots, the rest of the equipment was scattered throughout the room. Only one charger

was found. I also had a hard time figuring out how to operate the machine because the

company’s manual is poorly written and misleading. It told me to download software to a

computer, and use an AmigoLeash to connect to the robot through the serial port. Pedram

Hovareshti helped me to find what we thought was the leash. I spent the first week

following its instructions. I downloaded MobileEyes, MobileSim, and Aria, the software

for operating the robot recommended by the company, onto a Windows computer. The

Aria program consisted of many programs in python, Java, and C++ that would make the

robot perform tasks. However, none of them worked. MobileEyes did not work either

because it required a robot server, which no one in the lab knew. MobileSim was the only

program that successfully operated. Using MobileSim, I was able to run programs and

simulate the movements of the robot. However, it was not helpful because I wanted to

physically navigate the robot throughout the room, not through a computer generated

map. There were also no instructions about the computer attached to the top of the robot.

At the beginning of the third week, Pedram took me to visit another lab, which was

working on a more complex robot built by the same company. They told me that I should

directly connect the top computer to a monitor and work from there.

Camera

The cameras did not match the options provided in the demo program. In the

program, when I select the camera mode, it offers me the choices of Sony PTZ, Canon

VCC4, DPPTU, AMPTU, and inverted Canon VCC4 cameras, either connected through

USB or serial ports. However, the cameras attached to the two robots are clearly labeled

 5

iSweet. iSweet specifications stated that the camera was compatible with the following

software: iChatAV, QuickTime Broadcaster, Yahoo Messenger, BTV, iStopmotion, and

iVisit. None of these software were seen on the robot. These options implied that the

robot was able to pivot the camera and look around. However, the iSweet cameras were

firmly locked in one position.

 After loading the GUI on the robot, I discovered that it had a program installed

called ACTS (Activmedia Color Tracking System). ACTS allowed me to see using the

camera. It claims to be integrated with Aria, but I could not use it in a program.

Battery

 I had also had problems with the battery. Through tests, I learned that the entire

unit could only be charged by connecting the computer and robot, but the robot stored the

energy. In addition, the computer could only use the energy from the battery in the robot,

and can not operate on external charges. The batteries were also drained rather quickly.

Defects

Both of the robots contained defective parts. The first robot, which will be

referred to as Robot A, has a broken mouse port. It also had problems running programs.

Whenever I attempted to run one, it displays the message: Aria: Received signal

‘SIGSEGU’. Shutting down. I did not understand why this had happened, but one of the

differences from the other computer was that when I logged into an account, it displayed

at76c503.c: using BSSID 02:00:a9:d7:1e:00.

Robot B had a weakened battery. It retained less energy per charge, and the hard

drives shut off by themselves when they did not have enough energy remaining. Robot B

does not have the problem Robot A does, but because it has a bad battery the robot can

turn off in the middle of programming.

To resolve this issue, I disconnected the wires connecting the robot to the

computer, and swapped the connections. However, this also caused a problem for testing

programs, because movement was severely restricted when the two robots are connected,

because in order to move one would have to drag the other. Later, I unscrewed and

switched the parts so that at least one robot operated successfully.

Java

I originally planned to program in Java. The installation of a java wrapper, which

allows the compiler to read java as well, requires a java runtime environment and other

programs. The process is complicated, and it is not worth using.

Although the Java invocations of methods are much simpler and easy to read,

adjusting to the C++ code was not extremely difficult.

Software

 I had trouble with a lot of the software. When I was working on the Windows

computer, I could not operate the MobileEyes and Aria programs. I also had problems

with the ACTS program for the camera.

 After the network was repaired, I started having issues with compiling a C++

program on the robot. The problem seems to be that G++ is not installed. When I try to

install it, the robot tells me that I need to update other software. When I try to update the

 6

software, it tells me I need to update Linux and gives me a list of packages that I can

install. However, none of these packages work, so I can no longer compile programs on

the robot.

Contacts

Contacting past students who had worked with these robots had also been a

problem. I had been given contact information for Dion Blazakis and Sung Park. My

email to Dion contained where I was working and what I was working on, but he only

responded after Pedram sent him an email. Dion was the lab manager, so he told me that

he did not know much about the work done on the robots. I left a message and emailed

Sung, but he never responded.

In summary, I was not able to achieve my original goal due to the issues

mentioned above. However, the implication of the robot communication could support a

lot of dangerous activities that human faces today. I think this project should continue to

be explored. I have identified next steps for the future research provided resources.

V. Implication
Robots working together can do many things. Their combined efforts can help

navigate terrain. For example, if one robot found an obstacle, another robot could fly up

to check for the best way to get around the obstacle. Communication could also be used

in deploying robots in war. Instead of risking human lives, robots can be sent in to

replace marines. Communication would also be useful in natural disasters. They can work

together to find and rescue people.

VI. Next Steps
These commercial robots already have algorithms to gather information and work

together. See Graph 1 for a simple flow chart for how I believe two robots will operate to

map a room. However, no algorithm is perfect, and many things can be done. For

example, the algorithm could be more efficient or simplified. The algorithm could be

improved by:

 Stronger signals to prevent interruption

 More transmissions per second to ensure that no information is lost or

repeated

 Incorporation of mass robots for operation

 7

 Graph1. Flow Chart of Cooperative Robot Algorithm

 Robot A sees

an object
Robot B sees

an object

Information is

passed to the other

robot and added to

an internal map of

the area

Robots continue

moving

Robot feedback

Task completed?

Stop
Yes

No

 8

References

Robot:

http://robots.mobilerobots.com/amigobot/amigofree/AmigoGuide.pdf

http://robots.mobilerobots.com/amigobot/originalAmigos.html

VI editor:

http://www.eng.hawaii.edu/Tutor/vi.html

Debian Linux:

http://www.ss64.com/bash/

http://www.debian.org/doc/manuals/user/ch6.html

Networking:

http://www.debian-administration.org/articles/254

http://www.debianadmin.com/debian-networking-for-basic-and-advanced-users.html

http://qref.sourceforge.net/Debian/reference/ch-gateway.en.html

Camera:

http://robots.mobilerobots.com/ACTS/

Acknowledgements
I would like to thank Professor Baras, for valuable discussions and guidance in

this interesting field. I would also like to thank him for providing me this excellent

opportunity to work in the Hybrid Networks Lab. I have learned tons about Linux and

robot algorithms during this extremely short summer. These experiences will be valuable

to carry on into my high school years and further higher educations. I would also like to

acknowledge Pedram Hovareshti, for consistently supervising and encouraging my work

as well as Dr. Yadong Shang, for endlessly helping me with my work. Finally, I would

like to thank my parents, for driving me to the University of Maryland everyday this past

summer.

http://robots.mobilerobots.com/amigobot/amigofree/AmigoGuide.pdf
http://robots.mobilerobots.com/amigobot/originalAmigos.html
http://www.eng.hawaii.edu/Tutor/vi.html
http://www.ss64.com/bash/
http://www.debian.org/doc/manuals/user/ch6.html
http://www.debian-administration.org/articles/254
http://www.debianadmin.com/debian-networking-for-basic-and-advanced-users.html
http://qref.sourceforge.net/Debian/reference/ch-gateway.en.html
http://robots.mobilerobots.com/ACTS/

